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a b s t r a c t

We introduce in this paper leprechauns, fairy chess pieces that can move either like
the standard queen, or to any tile within k king moves. We then study the problem
of placing n leprechauns on an n × n chessboard. When k = 1, this is equivalent to
the standard n-Queens Problem. We solve the problem for k = 2, as well as for k > 2
and n ≤ (k+ 1)2, giving in the process an upper bound on the lowest non-trivial value
of n such that the (k, n)-Leprechauns Problem is satisfiable. Solving this problem for
all k would be equivalent to solving the diverse n-Queens Problem, the variant of the
n-Queens Problem where the distance between the two closest queens is maximized.
While diversity has been a popular topic in other constraint problems, this is not the
case for the n-Queens Problem, making our results the first major ones in the domain.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The n-Queens Problem asks how to place n chess pieces on an n × n board such that no two pieces share the same
ow, column or diagonal. Finding such an arrangement can be done in linear time for every n apart from n = 2 and n = 3,
or which none exist [19,20]. Despite its relative easiness, the n-Queens Problem has proven to be very popular during
he last one and a half centuries, giving birth to several related combinatorial problems. Some of these variants remain
ractable, like the modular n-Queens Problem, where opposite sides of the board are merged to form a torus [22]. Some
f them on the other hand are NP-Complete, like the n-Queens Completion Problem which asks whether a given set of
ueens that have already been placed on the board can be extended to a solution to the standard n-Queens Problem [9].
he complexity of others is still open, see for example the question of finding the lexicographically minimal solution to
he n-Queens Problem [8].

An intuitive n-Queens Problem variation that, to the best of our knowledge, has never been studied, is the Diverse n-
ueens Problem. In this problem, the goal is to find a solution that not only fulfills the original constraints, but also places
he queens as far away as possible from each other. The absence of work on the subject is regrettable, because diversity
s a popular topic in constraint programming [1,4,14,15,21], with numerous applications that include recommender
ystems [27], exact satisfiability [5], car configuration [13,16], and architectural tests [17].
Finding a solution to the Diverse n-Queens Problem is equivalent to finding a solution to the standard n-Queens

roblem where all queens are more than k away from each other, with k being a distance parameter corresponding to
he number of moves a king needs to move between two tiles. Indeed, in order to find a solution for the former, one can
imply solve the latter for k from 1 to n− 1 and keep the largest k for which a solution was found. In the other direction,
hether a solution to the Diverse n-Queens Problem has all queens more than k apart from each other determines if there

s a solution to the n-Queens problem with the additional distance constraint.
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To model the requirement that all queens be more than k away from each other, we use a fairy1 chess piece that we
ame a leprechaun. Leprechauns can move either like a queen, or to any tile of the board that is at most k rows and at
ost k columns away from them, with k being their range. The problem of placing n queens on an n × n board such

that each one of them is (strictly) more than k away from her nearest neighbor becomes then the problem of placing n
non-attacking range-k leprechauns on that same n× n board. We call this problem the (k, n)-Leprechauns Problem. The
distance parameter k establishes a hierarchy over (k, n)-Leprechauns Problems: the higher k is, the more tiles a range-k
leprechaun can potentially move to, and therefore the harder it is to find a configuration of n non-attacking leprechauns.

In this paper, we take the first steps towards a characterization of the Leprechauns Problem depending on the
parameters k and n. As we mention among the definitions in the next section, a range-1 leprechaun is a queen, so the
(1, n)-Leprechauns Problem is already solved since it corresponds to the standard n-Queens problem. In Section 3, we
present the first of our two main results: a construction of a solution to the (2, n)-Leprechauns Problem for all n ≥ 10.

hile the (un-)satisfiability of this particular problem was already known for n < 10 [10], our algorithm is the first, as
ar as we know, to completely solve the (2, n)-Leprechauns Problem for any value of n.

For higher values of k, the (k, n)-Leprechauns Problem appears to be more challenging. We suspect, however, that the
rontier between unsatisfiability and satisfiability lies around the n = (k+ 1)2 parabola. Indeed, as we show in Section 4,
he (k, n)-Leprechauns Problem is always unsatisfiable (except for the trivial case n = 1) if n < (k+ 1)2, but can go either
ay if n = (k + 1)2, where the existence of a solution depends on the parity of k. Most of the section is devoted to the
roof of this result, while the remainder presents miscellaneous empirical observations. We conclude in Section 5.

. Definitions

A (chess)board is a grid of dimensions n× n containing n2 tiles. Each tile has coordinates (i, j), with i between 1 and n
ndicating the column and j between 1 and n indicating the row. We use the standard convention of numbering the
olumns from left to right and the rows from bottom to top. Diagonals can be labeled as well.

efinition 1 (Diagonals). The sum diagonal d+ is the set of tiles {(i, j)|i+ j = d+}. The difference diagonal d− is the set of
iles {(i, j)|i− j = d−}.

To define our distance metric, we use the appropriately named chessboard distance:

efinition 2 (Chessboard Distance). Let t1 and t2 be two tiles of respective coordinates (i1, j1) and (i2, j2). We say that the
hessboard distance between t1 and t2 is the maximum between |i1 − i2| and |j1 − j2|.

The chessboard distance is sometimes called Chebyshev distance. Since this is the only distance metric we will be using,
e will from now on simply refer to it as the distance.
The game of chess uses figurines, or pieces, that can moved from one tile to another. The n-Queens Problem focuses

n the eponymous queen piece:

efinition 3 (Queen). A queen is a chess piece that can move from a tile (i, j) to any other tile (i′, j′) as long as one of the
ollowing is true:

• i′ = i
• j′ = j
• i′ + j′ = i+ j
• i′ − j′ = i− j

The first condition corresponds to a move on the same column, the second to a move on the same row. The last two
onditions correspond to a diagonal move. The queen is a part of the standard chess figurine set. For recreational purposes,
any non-standard chess pieces have been invented. We now introduce the leprechaun chess piece:

efinition 4 (Range-k Leprechaun). A range-k leprechaun is a chess piece that can move from a tile t1 to any other tile t2
s long as one of the two following conditions is true:

• t2 can be reached from t1 by a queen move.
• The distance between t2 and t1 is at most k.

A range-1 leprechaun is a queen. A range-2 leprechaun is an amazon, or superqueen, although it has been called many
ames throughout history [3], like for example maharajah [7], and was even used as a substitute for the queen in ancient
ussian chess [12]. A range-3 leprechaun can be seen as the combination of a queen, a knight, a camel and a zebra, where
amels and zebras are fairy chess pieces that move to a tile (1,3) and (2,3) away respectively, leaping over intermediary
ieces.

1 Fairy chess pieces are chess pieces that are not part of the standard chess set.
2
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Fig. 1. A solution to the (2, 14)-Leprechauns Problem.

efinition 5 (Attack). Let t be a tile of the board. We say that a chess piece attacks t if it can move from its current tile
o t in one move. We say that a chess piece attacks another chess piece if the latter is placed on a tile attacked by the
ormer.

The n-Queens Problem can be generalized to numerous other (fairy) chess pieces, and the leprechaun is no exception.

efinition 6 ((k, n)-Leprechauns Problem). The (k, n)-Leprechauns Problem is to find a way to place n non-attacking range-k
eprechauns on an n× n board, or to prove that there is no such arrangement.

A solution to the (k, n)-Leprechauns Problem will be written as an ordered list of n rows, indexed by columns. In other
ords, if the ith element of a solution is j, then this solution contains a leprechaun on tile (i, j).
The board pictured in Fig. 1 illustrates the notions defined in this section. Its dimensions are 14 × 14, and it

ontains 14 leprechauns, each represented by a shamrock. The leprechaun in tile (11, 6) is in Sum Diagonal 17, because
ts coordinates add to 17, and in Difference Diagonal 5, because the row component of its coordinates subtracted
rom the column component gives 5. It is the only leprechaun in these diagonals, which go from (3, 14) to (14, 3)
and from (6, 1) to (14, 9), respectively, and is also alone in Row 6 and Column 11. Its nearest neighbors are the
leprechauns in tiles (13,3) and (12,9), each at distance 3, so if it is a range-1 or range-2 leprechaun, then it does not
attack them. In fact, this board is a solution for the (1, n)- and (2, n)-Leprechauns Problems, which can be written as
(1, 4, 7, 10, 13, 5, 8, 11, 14, 2, 6, 9, 3, 12). However this board is not a solution to the (k, n)-Leprechauns Problem for
k ≥ 3, because several pairs of leprechauns are within distance 3 of each other.

To remain consistent with the labeling of the board axes, we will use ‘‘mȯdulo’’ and mȯd instead of ‘‘modulo’’ and mod,
here a mȯd b is equal to b if a is divisible by b, and to a mod b otherwise. So for example 28 mȯd 14 = 14.

3. The (2, n)-Leprechauns problem

The case of the range-1 leprechaun is equivalent to the n-Queens Problem, for which a linear-time algorithm to
find a solution for each n (apart from n = 2 and n = 3 for which there is no solution) has been known since the
nineteenth century [19,20]. In contrast, we are not aware of any algorithm, regardless of complexity, that can solve the
(2, n)-Leprechauns Problem for any n.

For the first few values of n, the number of solutions to the (2, n)-Leprechauns Problem is given at the On-line
Encyclopedia of Integer Sequences [25], where (2, n)-Leprechauns are called ‘‘superqueens’’. In 2004 a mention was made
on that web-site of code by Frank Schwellinger that could solve the problem in linear time, but the link is no longer active.
A cached version2 reveals his algorithm, which appears to be incorrect when n is congruent to 2 or to 3 mȯdulo 6 and
n ≥ 26. For n = 50 for example, his construction places superqueens on tiles (11,44) and (36,19), which belong to the
same diagonal. A subsequent literature review of the problem [2] does not mention any algorithm that works for all n.

2 https://web.archive.org/web/20040823045854/http://super.info.ms/.
3
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he only results so far for the (2, n)-Leprechauns Problem are partial. If n ≥ 10 is a prime or 1 less than a prime, then
here is a solution to the (2, k)-Leprechauns Problem [11]. If n < 10, then there is a solution to the (2, n)-Leprechauns
roblem if and only if n = 1 [10]. The problem has also been solved when the number of leprechauns to place is strictly

less than n and the board is a torus [18].
Many solutions to the n-Queens Problem are based on linear congruence algorithms, meaning that the queen in each

column is a constant number of rows (mȯdulo n) above the queen from the previous column. Because of arithmetical
properties, these methods have to vary the exact height of this step, and possibly make other adjustments to the
construction, depending on the value of n mȯdulo 6. When a step of at least k + 1 rows is allowed between queens
from consecutive columns, the additional distance constraint inherent to range-k leprechauns will be fulfilled and the
n-queens solutions can be used as is for the (k, n)-Leprechaun Problem. Unfortunately, in some cases (most often when
n ≡ 2 mȯd 6 or n ≡ 3 mȯd 6) strict conditions on the structure of n-Queens solution do not allow for the leprechaun
distance constraints to be satisfied without substantial alterations to the algorithm itself.

We are now going to present a linear-time algorithm that for any n either returns a solution to the (2, n)-Leprechauns
roblem, or indicates that none exists. Our algorithm also distinguishes cases depending on the congruence of n mȯdulo
, although the particular case of n ≡ 2 mȯd 6 will be further partitioned, with its two main subcases being n ≡ 2 mȯd 12

and n ≡ 8 mȯd 12. For n ≡ 1 mȯd 6, n ≡ 3 mȯd 6, and n ≡ 5 mȯd 6, we will use one of the n-Queens constructions
hat allow for jumps of 3 rows from one column to the next [6]. We start with the cases 1 mȯd 6 and 5 mȯd 6, which are
reated in Algorithm 1.

Data: An integer n such that n ≡ 1 mȯd 6 or n ≡ 5 mȯd 6, and n = 1 or n ≥ 11.
Result: A solution to the (2, n)-Leprechauns Problem.

1 Declare Sol, an array with n cells;
2 Sol[1] ← 1;
3 for c ← 2 to n do Sol[c] ← (Sol[c − 1] + 3) mȯd n;
4 return Sol;

Algorithm 1: When n ≡ 1 mȯd 6 or n ≡ 5 mȯd 6.

Lemma 1. Let n be an integer such that n ≡ 1 mȯd 6 or n ≡ 5 mȯd 6, and such that n = 1 or n ≥ 11. Then Algorithm 1
returns a solution to the (2, n)-Leprechauns Problem.

Proof. If n = 1, then the solution consists of a single leprechaun and the satisfiability is trivial. Otherwise, we have
n ≥ 11. Suppose that the leprechauns in tiles (i, j) and (i′, j′) attack each other. Assume without loss of generality that
i < i′. We know that the algorithm gives a solution to the n-Queens Problem [6], so the only way for these leprechauns
to attack each other is if they are within distance 2 of each other. So i′ = i+ 1 or i′ = i+ 2. So j′ mȯd n = j+ 3 mȯd n or
j′ mȯd n = j+6 mȯd n. The two rows above Row j are Rows j1 and j2 with j1 mȯd n = j+1 mȯd n and j2 mȯd n = j+2 mȯd n.
The two rows below Row j are Rows j−1 and j−2 with j−1 mȯd n = j + n − 1 mȯd n and j−2 mȯd n = j + n − 2 mȯd n.
Since n ≥ 11, Row j′ is neither one of the two rows above Row j nor one of the two rows below Row j. Since the queens
constraints are satisfied, we also know that Row j′ is not Row j. So the leprechauns on tiles (i, j) and (i′, j′) cannot be
within distance 2 of each other. This proves the validity of the algorithm. □

Fig. 2 illustrates the solution output by Algorithm 1 for n = 13. Notice that the algorithm places a leprechaun on the
bottom left tile of the board (Line 2). This means that by cropping out the first row and the first column of the n × n
board, we get an arrangement of n−1 non-attacking leprechauns on an (n−1)× (n−1) board, which is a solution to the
(2, n−1)-Leprechauns Problem. For example, the top right part of the board in Fig. 2 is a solution to the (2, 12)-Leprechauns
Problem. Algorithm 2 exploits the property to solve the cases n ≡ 4 mȯd 6 and n ≡ 6 mȯd 6.

Data: An integer n ≥ 10 such that n ≡ 4 mȯd 6 or n ≡ 6 mȯd 6.
Result: A solution to the (2, n)-Leprechauns Problem.

1 Declare Sol, an array with n cells;
2 Sol[1] ← 3;
3 for c ← 2 to n do Sol[c] ← (Sol[c − 1] + 3) mȯd (n+ 1);
4 return Sol;

Algorithm 2: When n ≡ 4 mȯd 6 or n ≡ 6 mȯd 6.

Lemma 2. Let n ≥ 10 be an integer such that n ≡ 4 mȯd 6 or n ≡ 6 mȯd 6. Then Algorithm 2 returns a solution to the
(2, n)-Leprechauns Problem.

Proof. We just need to prove that Algorithm 2 returns the same board as Algorithm 1, minus the bottom row rbottom and
the leftmost column cleft . Observe that the congruence is modulo n+1, which compensates for the lack of the bottom row
rbottom when Sol[c − 1] + 3 is greater than n. So the only thing to check is that the result of the congruence mȯdulo n+ 1
is never n+ 1. We know that n+ 1 is congruent to either 1 or 5 mȯdulo 6, so it is prime with 3. Furthermore, the value
in the first cell of the solution is 3 (Line 2), and the height of the jump between consecutive columns is also 3 (Line 3),
4
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Fig. 2. A solution to the (2, 13)-Leprechauns Problem.

o the first time that the result of the congruence will be n+ 1 is at the (n+ 1)th column, which is not used because of
the lack of the leftmost column cleft . □

For n ≡ 3 mȯd 6, we use one of the rare constructions that allow a jump height of 3 for this particular case [6]. The
method is presented in Algorithm 3, and illustrated in Fig. 3.

Data: An integer n ≥ 15 such that n ≡ 3 mȯd 6.
Result: A solution to the (2, n)-Leprechauns Problem.

1 Declare Sol, an array with n cells;
2 Sol[1] ← 5; // Can actually be any value between 5 and n− 9 inclusive.
3 for c ← 2 to n

3 do
4 Sol[c] ← (Sol[c − 1] + 3) mȯd n;
5 end
6 Sol[ n3 + 1] ← Sol[ n3 ] + 7;
7 for c ← n

3 + 2 to 2n
3 do

8 Sol[c] ← (Sol[c − 1] + 3) mȯd n;
9 end

10 Sol[ 2n3 + 1] ← Sol[ 2n3 ] + 7;
11 for c ← 2n

3 + 2 to n do
12 Sol[c] ← (Sol[c − 1] + 3) mȯd n;
13 end
14 return Sol;

Algorithm 3: When n ≡ 3 mȯd 6.

Lemma 3. Let n ≥ 15 be an integer such that n ≡ 3 mȯd 6. Then Algorithm 3 returns a solution to the (2, n)-Leprechauns
Problem.

Proof. The reasoning is similar to the one used in the proof of Lemma 1, in that we already know that the algorithm
outputs a solution for the n-Queens Problem [6], so we only need to check that the distance constraints are satisfied.

Suppose that the leprechauns in tiles (i, j) and (i′, j′) attack each other. Assume without loss of generality that i < i′.
Since queens constraints are fulfilled [6], the only way for these leprechauns to attack each other is if they are within
distance 2 of each other. So i′ = i+ 1 or i′ = i+ 2. The height of the jump between successive columns is either 3 (Lines
4, 8, and 12) or 7 (Lines 6 and 10), and the latter does not occur consecutively (because it occurs at Columns n

3 + 1 and
2n
3 + 1, and since n ≥ 15 we have n

3 + 1 < 2n
3 + 1− 1), so j′ can only be equal to j+ 3 mȯd n, j+ 7 mȯd n, or j+ 10 mȯd n.

The two rows above Row j are Rows j1 and j2 with j1 mȯd n = j + 1 mȯd n and j2 mȯd n = j + 2 mȯd n. The two rows
below Row j are Rows j and j with j mȯd n = j + n − 1 mȯd n and j mȯd n = j + n − 2 mȯd n. Since n ≥ 15,
−1 −2 −1 −2

5
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Fig. 3. A solution to the (2, 27)-Leprechauns Problem.

ow j′ cannot be Row j, cannot be one of the two rows above Row j, and cannot be one of the two rows below Row j. So
he leprechauns on tiles (i, j) and (i′, j′) cannot be within 2 of each other. This proves the validity of the algorithm. □

Algorithm 3 places the first column’s leprechaun in Row 5. Any row between Row 5 and Row n − 9 inclusive would
ave worked too [6]. For example, Fig. 3 illustrates for n = 27 the output of Algorithm 3 when placing the first column’s
eprechaun in Row 8 instead of Row 5. The result is still a solution to the (2, 27)-Leprechauns Problem. Furthermore, we
ever mention Line 2 in the proof of Lemma 3, so its correctness stands regardless of which row in this set is chosen.
On the other hand, placing the first column’s leprechaun in either one of the first four rows or one of the last nine ones

ould lead to violated diagonal constraints if following the rest of Algorithm 3. In particular, we cannot use Algorithm 2’s
rick of placing a leprechaun in a corner of the board and then cropping one side row and one side column to get a solution
o the (2, n− 1)-Leprechauns Problem.

When n ≡ 2 mȯd 6, applying Algorithm 3 to n+ 1 and removing the last column of the output gives an arrangement
f n non-attacking leprechauns on an (n+ 1)× n board. Moving the last row’s leprechaun to the one row among the first

n that is empty transforms this into an arrangement of n leprechauns on an n × n board that respects row and column
constraints, however other constraints might not be satisfied. As an example, cropping out the last column in Fig. 3 and
moving the leprechaun in Column 15 from the last row to the now empty Row 13 places this leprechaun on the same
diagonal as the one on tile (24,4). To obtain a general solution for the case n ≡ 2 mȯd 6 with this method, special care
as to be taken when choosing in which row to place the first column’s leprechaun. No row works for all n, but when
≥ 20 it is possible for all but six small values of n to determine an acceptable row for the first leprechaun by looking at

he remainder of n divided by 12, as is done in Algorithm 4. Even the other six values of n can be treated with the same
lgorithm, by using their own separate formula to find out in which row to place the first column’s leprechaun.
6
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Data: An integer n ≥ 20 such that n ≡ 2 mȯd 6.
Result: A solution to the (2, n)-Leprechauns Problem.

1 Declare Sol, an array with n cells;
2 if n = 20 or n = 26 or n = 32 or n = 38 or n = 44 or n = 56 then
3 Sol[1] ← n− 10;
4 end
5 if n ≥ 50 and n ≡ 2 mȯd 12 then Sol[1] ← 8;
6 if n ≥ 68 and n ≡ 8 mȯd 12 then Sol[1] ← 14;
7 for c ← 2 to n+1

3 do
8 Sol[c] ← (Sol[c − 1] + 3) mȯd (n+ 1);
9 end

10 Sol[ n+13 + 1] ← Sol[ n+13 ] + 7;
11 for c ← n+1

3 + 2 to 2(n+1)
3 do

12 Sol[c] ← (Sol[c − 1] + 3) mȯd (n+ 1);
13 end
14 Sol[ 2(n+1)3 + 1] ← Sol[ 2(n+1)3 ] + 7;
15 for c ← 2(n+1)

3 + 2 to n do
16 Sol[c] ← (Sol[c − 1] + 3) mȯd (n+ 1);
17 end
18 if n = 20 or n = 26 or n = 32 or n = 38 or n = 44 or n = 56 then
19 Sol[ 2(n+1)3 + 2] ← n− 5;
20 end
21 if n ≥ 50 and n ≡ 2 mȯd 12 then Sol[ 2(n+1)3 − 3] ← 13;
22 if n ≥ 68 and n ≡ 8 mȯd 12 then Sol[ 2(n+1)3 − 5] ← 19;
23 return Sol;

Algorithm 4: When n ≡ 2 mȯd 6.

Lemma 4. Let n ≥ 20 be an integer such that n ≡ 2 mȯd 6. Then Algorithm 4 returns a solution to the (2, n)-Leprechauns
roblem.

roof. If n ∈ {20, 26, 32, 38, 44, 56}, the outputs are as follows:

n = 20: (10,13,16,19,1,4,7,14,17,20,2,5,8,11,18,15,3,6,9,12)
n = 26: (16,19,22,25,1,4,7,10,13,20,23,26,2,5,8,11,14,17,24,21,3,6,9,12,15,18)
n = 32: (22,25,28,31,1,4,7,10,13,16,19,26,29,32,2,5,8,11,14,17,20,23,30,27,3,6,9,12,15,18,21,24)
n = 38: (28,31,34,37,1,4,7,10,13,16,19,22,25,32,35,38,2,5,8,11,14,17,20,23,26,29,

36,33,3,6,9,12,15,18,21,24,27,30)
n = 44: (34,37,40,43,1,4,7,10,13,16,19,22,25,28,31,38,41,44,2,5,8,11,14,17,20,23,26,

29,32,35,42,39,3,6,9,12,15,18,21,24,27,30,33,36)
n = 56: (46,49,52,55,1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,50,53,56,2,5,8,11,14,

17,20,23,26,29,32,35,38,41,44,47,54,51,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48)

In each case, the bold value indicates the leprechaun that was moved in Lines 18–20. All of these outputs have been
onfirmed to be solutions by a constraint solver, so we will now assume that n ≥ 50 and n ≡ 2 mȯd 12 (respectively
≥ 68 and n ≡ 8 mȯd 12).
Let us put aside for the moment the last three lines of the algorithm, and let us attempt to describe the state of the

oard after Line 17. The board can be partitioned in three. The first part covers Columns 1 to n+1
3 and is filled in Lines

to 9. The second part covers Columns n+1
3 + 1 to 2(n+1)

3 and is filled in Lines 10 to 13. Finally the last part covers
olumns 2(n+1)

3 + 1 to n and is filled in Lines 14 to 17. In each part, the row of a leprechaun is determined by adding
3 mȯdulo n + 1 to the row of the previous column’s leprechaun. Since n ≡ 2 mȯd 6, n + 1 is divisible by 3, so all
leprechauns in the same part are congruent to the same value mȯdulo 3. From Line 5 (respectively 6), we know that the
first leprechaun is placed in Row 8 (respectively 14), so the rows of the leprechauns in the leftmost part of the board
comprise all the numbers less than n+ 1 that are equal to 2 mȯdulo 3, in the following order: [8, 11, . . . , n− 3, n, 2, 5]
(respectively [14, 17, . . . , n − 3, n, 2, 5, 8, 11]). From that and Line 10, we know that the next leprechaun is placed in
Row 12 (respectively 18), so the rows of the leprechauns in the second part of the board comprise all the numbers less or
equal than n+1 that are equal to 3 mȯdulo 3, in the following order: [12, 15, . . . , n−5, n−2, n+1, 3, 6, 9] (respectively
[18, 21, . . . , n − 5, n − 2, n + 1, 3, 6, 9, 12, 15]). With Line 14 we now know that the next leprechaun is placed in Row
16 (respectively 22), so the rows of the leprechauns in the rightmost part of the board comprise all the numbers less
than n + 1 that are equal to 1 mȯdulo 3, except the number that corresponds to the row of the leprechaun that would
7
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Table 1
Leprechaun coordinates when n ≥ 50 and n ≡ 2 mȯd 12.
Column c Row Sum diagonal Difference diagonal

1 to n+1
3 − 2 8+ 3(c − 1) 4c + 5 −2c − 5

n+1
3 − 1 to n+1

3 2, 5 n+1
3 + (1, 5) n+1

3 − (3, 5)
n+1
3 + 1 to 2(n+1)

3 − 3 12+ 3(c − n+1
3 − 1) 4c + 8− n −2c − 8+ n

2(n+1)
3 − 2 to 2(n+1)

3 3, 6, 9 2(n+1)
3 + (1, 5, 9) 2(n+1)

3 − (5, 7, 9)
2(n+1)

3 + 1 to n− 4 16+ 3(c − 2(n+1)
3 − 1) 4c + 11− 2n −2c − 11+ 2n

n− 3 to n 1, 4, 7, 10 n+ (−2, 2, 6, 10) n− (4, 6, 8, 10)

Table 2
Leprechaun coordinates when n ≥ 68 and n ≡ 8 mȯd 12.
Column c Row Sum diagonal Difference diagonal

1 to n+1
3 − 4 14+ 3(c − 1) 4c + 11 −2c − 11

n+1
3 − 3 to n+1

3 2, 5, 8, 11 n+1
3 + (−1, 3, 7, 11) n+1

3 − (5, 7, 9, 11)
n+1
3 + 1 to 2(n+1)

3 − 5 18+ 3(c − n+1
3 − 1) 4c + 14− n −2c − 14+ n

2(n+1)
3 − 4 to 2(n+1)

3 3, 6, 9, 12, 15 2(n+1)
3 + (−1, 3, 7, 11, 15) 2(n+1)

3 − (7, 9, 11, 13, 15)
2(n+1)

3 + 1 to n− 6 22+ 3(c − 2(n+1)
3 − 1) 4c + 17− 2n −2c − 17+ 2n

n− 5 to n 1, 4, 7, 10, 13, 16 n+ (−4, 0, 4, 8, 12, 16) n− (6, 8, 10, 12, 14, 16)

have been placed in Column n+ 1 if the loop had iterated once more. The order of the rows in the last part is as follows:
16, 19, . . . , n− 4, n− 1, 1, 4, 7, 10] (respectively [22, 25, . . . , n− 4, n− 1, 1, 4, 7, 10, 13, 16]), and all numbers less than
n + 1 have been placed in the solution, with the exception of 13 (respectively 19), that would have been placed in cell
n+ 1. The formulas describing the coordinates of the leprechauns depending on which part of the board they belong are
detailed in Table 1 for n ≥ 50 and n ≡ 2 mȯd 12, and in Table 2 for n ≥ 68 and n ≡ 8 mȯd 12. The smallest size for which
these tables are relevant is n = 50, which is too large to represent. However, while it is not actually a solution to the
(2, 26)-Leprechauns Problem, Fig. 3 provides a convenient visual representation in a manageable size of the construction
when placing the first leprechaun in tile (1,8).

From Lemma 3 we know that Lines 5–17 produce an arrangement of n non-attacking leprechauns on an (n + 1) × n
board. It remains to demonstrate that the operations done in Lines 21 and 22 are equivalent to moving the leprechaun
in the last row to an empty row, and that this move does not introduce a conflict.

From Table 1 (respectively 2), we know that the leprechaun in Column 2(n+1)
3 −3 (respectively 2(n+1)

3 −5) was initially
laced in Row 12 + 3( 2(n+1)3 − 3 − n+1

3 − 1) = 12 + 3( n+13 − 4) = n + 1 (respectively 18 + 3( 2(n+1)3 − 5 − n+1
3 − 1) =

8 + 3( n+13 − 6) = n + 1). We also know that no leprechaun was placed in Row 13 (respectively 19). Therefore Line
21 (respectively 22) describes moving the leprechaun in Row n + 1 to an empty row, resulting in an n × n board with
n leprechauns, and all row and column constraints satisfied. Moreover, the tables inform us that the leprechauns in the
previous two columns are in Rows n− 5 and n− 2, and that the leprechauns in the next two columns are in Rows 3 and
6. Since n ≥ 50, this means that moving the leprechaun in tile ( 2(n+1)3 − 3, n+ 1) (respectively ( 2(n+1)3 − 5, n+ 1)) to tile
2(n+1)

3 −3, 13) (respectively ( 2(n+1)3 −5, 19)) does not put it within reach of another range-2 leprechaun. Therefore it only
remains to show that no other leprechaun shares a diagonal with the tile ( 2(n+1)3 − 3, 13) (respectively ( 2(n+1)3 − 5, 19)).

Let n ≥ 50 such that n ≡ 2 mȯd 12. The leprechaun l that was moved to the tile ( 2(n+1)3 − 3, 13) is in the sum diagonal
+ =

2(n+1)
3 + 10 and in the difference diagonal d− = 2(n+1)

3 − 16. Since n+ 1 is divisible by 3, both d+ and d− are even.
Let l′ be a leprechaun such that l and l′ attack each other. Let c ′ be the column of l′, let d′

+
be the sum diagonal of l′, and

let d′
−

be the difference diagonal of l′. The possible values for d′
+

and d′
−

depending on c ′ are given in Table 1.

• If 1 ≤ c ′ ≤ n+1
3 − 2: both d′

+
and d′

−
are odd, so there can be no conflict.

• If n+1
3 − 1 ≤ c ′ ≤ n+1

3 : since n ≥ 50, we have d′
+
≤

n+1
3 + 5 <

2(n+1)
3 + 10 = d+, so d′

+
̸= d+. Similarly, since n ≥ 50

we have d′
−
≤

n+1
3 − 3 <

2(n+1)
3 − 16 = d−, so d′

−
̸= d−.

• If n+1
3 +1 ≤ c ′ ≤ 2(n+1)

3 −3: in this case d′
+
= 4c ′+8−n and d′

−
= −2c ′−8+n. Since n ≡ 2 mȯd 12, and in particular

since n ≡ 2 mȯd 4, we have d′
+
≡ 2 mȯd 4, but d+ = 2(n+1)

3 + 10 ≡ 4 mȯd 4, so d′
+
̸= d+. Since c ′ ≥ n+1

3 + 1, we
have d′

−
≤ −2( n+13 + 1) − 8 + n = n+1

3 − 11, which is strictly smaller than 2(n+1)
3 − 16 = d− because n ≥ 50, so

d′
−
̸= d−.

• If 2(n+1)
3 − 2 ≤ c ′ ≤ 2(n+1)

3 : both d′
+

and d′
−

are odd, so there can be no conflict.
• If 2(n+1)

+ 1 ≤ c ′ ≤ n− 4: both d′ and d′ are odd, so there can be no conflict.
3 + −

8
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• If n − 3 ≤ c ′ ≤ n: since n ≥ 50, we have d+ = 2(n+1)
3 + 10 < n − 2 ≤ d′

+
, so d′

+
̸= d+. Similarly, since n ≥ 50 we

have d− = 2(n+1)
3 − 16 < n− 10 ≤ d′

−
, so d′

−
̸= d−.

herefore, if n ≥ 50 and n ≡ 2 mȯd 12, then the leprechaun l does not share a diagonal with another leprechaun.
If n ≥ 68 and n ≡ 8 mȯd 12, the proof is almost identical with the minor difference being that if n+1

3 + 1 ≤ c ′ ≤
2(n+1)

3 −5, the congruences mȯdulo 4 of d′
+
and d+ are switched. In any case, the result is the same: moving the leprechaun

n Row n + 1 to Row 19 in Line 22 does not violate any diagonal constraint. Since that was all that remained to show,
his concludes the proof. □

Now that we have treated each residue class mȯdulo 6, we collect them together in Algorithm 5, which solves the
(2, n)-Leprechauns Problem for all n.

Data: An integer n.
Result: Either a solution to the (2, n)-Leprechauns Problem or ‘‘No solution’’.

1 if n ≥ 2 and n ≤ 9 then return ‘‘No solution’’;
2 if n = 14 then return (1,4,7,10,13,5,8,11,14,2,6,9,3,12);
3 if n ≡ 1 mȯd 6 or n ≡ 5 mȯd 6 then return Algorithm 1;
4 if n ≡ 4 mȯd 6 or n ≡ 6 mȯd 6 then return Algorithm 2;
5 if n ≡ 3 mȯd 6 then return Algorithm 3;
6 if n ≡ 2 mȯd 6 then return Algorithm 4;

Algorithm 5: General case.

heorem 1. Algorithm 5 solves the (2, n)-Leprechauns Problem in linear time.

roof. Each of Algorithms 1, 2, 3 and 4 loops through Columns 1 to n exactly once, so Algorithm 5’s time complexity is
learly linear. As for its correctness:

Line 1: Already known result [10].
Line 2: Fig. 1 shows that this is indeed a solution.
Line 3: From Lemma 1.
Line 4: From Lemma 2.
Line 5: From Lemma 3.
Line 6: From Lemma 4. □

. The (k ≥ 3, n)-Leprechauns problem

.1. When n is under (k+ 1)2

We know that the (1, n)-Leprechauns (n-Queens) Problem has a solution for n = 1, has no solution for n = 2 to n = 3,
nd has a solution for n ≥ 4. We also now know that the (2, n)-Leprechauns Problem has a solution for n = 1, has no
olution for n = 2 to n = 9, and has a solution for n ≥ 10. This would seem to indicate a pattern in the behavior of the
k, n)-Leprechauns Problem, where for n = 1 there is a trivial solution, for n from 2 to some N the board is too small to
upport a solution, and finally for sizes over N the board is large enough to accommodate leprechaun distance constraints.
e suspect that the transition between these two phases occurs around n = (k+ 1)2. To support this conjecture, we are
ow going to present two formal results that demonstrate the importance of this particular function. First we show that
he whole area under this parabola is in the unsatisfiability region (apart from the trivial case n = 1).

roposition 1. Let k > 0 and n > 1 be two integers such that n < (k+1)2. Then there is no solution for the (k, n)-Leprechauns
roblem.

roof. Let n′ = ⌈ n
k+1⌉ and for 1 ≤ i, j ≤ n′, let the box Bi,j be the set of tiles with coordinates (i′, j′) such that

(k+ 1)× (i− 1)+ 1 ≤ i′ ≤ min((k+ 1)× (i− 1)+ k+ 1, n) and (k+ 1) ∗ (j− 1)+ 1 ≤ j′ ≤ min((k+ 1)× (j− 1)+ k+ 1, n).
he dimensions of a box Bi,j are at most k+ 1× k+ 1, so any two tiles in Bi,j are at distance at most k from each other,
o at most one range-k leprechaun can be placed in a box Bi,j.
Consider the set of boxes B that contains the boxes Bi,j. If k+ 1 divides n then all n′2 boxes in B will be of dimension

k + 1) × (k + 1), otherwise B will contain (n′ − 1)2 boxes of dimension (k + 1) × (k + 1), n′ − 1 boxes of dimension
′
× (k+ 1), n′ − 1 boxes of dimension (k+ 1)× k′ and one box of dimension k′ × k′ for some 1 ≤ k′ < k+ 1. Moreover
forms a partition of the board, illustrated in Fig. 4.
If n′ < k+ 1, then the number of boxes is fewer than the number of leprechauns to place, so we have n′ = k+ 1.
Since at most one range-k leprechaun can fit in each box, and since the k + 1 boxes B1,1, B1,2, . . . , B1,n′ span exactly
+ 1 columns of the board, we know that each of these boxes contains exactly one leprechaun. In particular the box
9
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Fig. 4. Partition of the board into boxes.

B1,n′ contains one leprechaun. With the same reasoning on the other vertical sets of boxes, we know that the other boxes
B2,n′ , . . . , Bn′−1,n′ at the top edge of the board (minus the last one which spans only k′ columns) contain one range-k
eprechaun each. So these k boxes (n′ = k + 1 boxes at the top edge of the board, minus the last one) contain k total
ange-k leprechauns. But they span k′ rows, so they can contain at most k′ total range-k leprechauns. So k′ ≥ k. Since
< (k+ 1)2 we have k′ < k+ 1 and therefore k′ = k.
Since k′ = k, we have n = k(k+ 1)+ k = (k+ 1)2− 1, with the number of boxes in B being (k+ 1)2. So every box in B

ut one contains a range-k leprechaun. Since the k+ 1 boxes B1,n′ , B2,n′ , . . . , Bn′,n′ at the top edge of the board only span
k′ = k rows of the board, it means that the empty box is among them. Similarly, since the k+1 boxes Bn′,1, Bn′,2, . . . , Bn′,n′

at the right edge of the board only span k columns of the board, it means that the empty box is also among them. So the
empty box is Bn′,n′ and every other box in B contains exactly one range-k leprechaun.

Since the box B1,n′ spans only k rows of the board, the range-k leprechaun in that particular box attacks all tiles on
the top row of the box B1,n′−1, which is the intersection of B1,n′−1 with the n − k′th row of the board. So there is no
range-k leprechaun on the top row of the box B1,n′−1. Similarly, there is no range-k leprechaun on the top row of the
boxes B2,n′−1, . . . , Bn′−1,n′−1. So the range-k leprechaun l in the n − k′th row of the board is in the top row of the box
Bn′,n′−1. Using a mirrored reasoning we also get that the range-k leprechaun l′ in the n − k′th column of the board is in
the rightmost column of the box Bn′−1,n′ . Since l is at most k columns to the right of l′, and since l′ is at most k rows
above l, the two range-k leprechauns attack each other. So there is no solution for the (k, n)-Leprechauns Problem when
n < (k+ 1)2. □

Note that at no point in the proof of Proposition 1 did we mention diagonal constraints. These only come in play for
n ≥ (k+1)2, which is where the board is large enough to contain an arrangement that fulfills all other constraints. As we
10
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Fig. 5. Partition of the board into boxes when n = (k+ 1)2 .

re now going to show, (k+1)2 is the first size for which the (k, n)-Leprechauns Problem is neither always satisfiable nor
lways unsatisfiable. Instead, whether there is a solution depends on the parity of k. We will also characterize solutions,
hen they exist.

roposition 2. Let k > 0 and n be two integers such that n = (k + 1)2. Then there is a solution to the (k, n)-Leprechauns
roblem if and only if k is odd, in which case there are exactly two (symmetrical) solutions.

roof. We define boxes the same way we did in the proof for Proposition 1: each box Bi,j is a square subset of the board
ontaining (k+ 1)× (k+ 1) tiles, and the bottom left tile of Bi,j is the tile ((k+ 1)× (i− 1)+ 1, (k+ 1)× (j− 1)+ 1). Since
= (k+ 1)2, there are n boxes, as illustrated in Fig. 5. Also, since each box can contain at most one leprechaun and since
leprechauns need to be placed on the board, each box contains exactly one leprechaun.
We start by showing that within a column of boxes, all leprechauns must be located at the same row of their respective

oxes.

emma 5. Let i be such that 1 ≤ i ≤ k+ 1. Then there exist some r such that for each 1 ≤ j ≤ k+ 1, there is a leprechaun
n the rth row of Bi,j.

roof. We know that there is a leprechaun on Row k+ 1. Let iA such that the box BiA,1 is the bottom box that contains
leprechaun in its k+ 1th row. Since leprechauns have a range of k, there cannot be a leprechaun in the first k rows of
he box BiA,2. So BiA,2 also contains a leprechaun in its k+ 1th row. Using the same argument for boxes BiA,3 to BiA,k+1, we
an see that all boxes B contain a leprechaun in their k+ 1th row.
iA,j

11
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We know that there is a leprechaun on Row k. Let iB such that iB ̸= iA and the box BiB,1 is the bottom box that contains
a leprechaun in its kth row. Since leprechauns have a range of k, there cannot be a leprechaun in the first k−1 rows of the
box BiB,2. So there is a leprechaun in either the kth or the k+ 1th row of BiB,2. But we know that BiA,2 is the box (among
the ones on the second row of boxes) that contains a leprechaun in its k+ 1th row. Therefore BiB,2 contains a leprechaun
in its kth row. Using the same argument for boxes BiB,3 to BiB,k+1, we can see that all boxes BiB,j contain a leprechaun in
their kth row.

Repeating the reasoning for Rows k− 1 to 1 completes the proof of the Lemma. □

By switching row and column coordinates the same proof can be used to prove the corresponding property for
leprechauns within the same row of boxes:

Lemma 6. Let j be such that 1 ≤ j ≤ k+ 1. Then there exist some c such that for each 1 ≤ i ≤ k+ 1, there is a leprechaun
in the cth column of Bi,j.

We now show that within a column of boxes, the columns of the leprechauns either monotonically increase or
monotonically decrease.

Lemma 7. Let i be such that 1 ≤ i ≤ k+ 1. Then one of the following is true:

• For all 1 ≤ j ≤ k+ 1, there is a leprechaun in the jth column of Bi,j.
• For all 1 ≤ j ≤ k+ 1, there is a leprechaun in the k+ 2− jth column of Bi,j.

Proof. From Lemma 5 we know that there exists some r such that all leprechauns in this column of boxes are in the rth
row of their columns.

Suppose that the order of the leprechauns’ columns is not monotonically decreasing. Therefore there exist j0, c1 and c2
uch that c1 < c2, there is a leprechaun in the c1th column of Bi,j0 , and there is a leprechaun in the c2th column of Bi,j0+1.
Suppose also that the order of the leprechauns’ rows in the row of boxes j0 is not monotonically decreasing. Then there
xist i0, r1 and r2 such that r1 < r2, there is a leprechaun in the r1th row of Bi0,j0 , and there is a leprechaun in the r2th

row of Bi0+1,j0 . Since there is a leprechaun in the c1th column of Bi,j0 , we know from Lemma 6 that the leprechaun in the
r2th row of Bi0+1,j0 is in the c1th column of this box. Since there is a leprechaun in the c2th column of Bi,j0+1 and there is
a leprechaun in the r1th row of Bi0,j0 , we also know from Lemmas 5 and 6 that there is a leprechaun in the r1th row and
c2th column of Bi0,j0+1. Since c1 < c2 and r1 < r2, this leprechaun is attacking the leprechaun located in the r2th row and
c1th column of Bi0+1,j0 . So if the order of the leprechauns’ columns is not monotonically decreasing, then the order of the
leprechauns’ rows must be monotonically decreasing.

By replacing ‘‘decreasing’’ with ‘‘increasing’’ and ‘‘<’’ with ‘‘>’’ in the previous paragraph, we can also show that
if the order of the leprechauns’ columns is not monotonically increasing, then the order of the leprechauns’ rows
must be monotonically increasing. So if the order of the leprechauns’ columns is neither monotonically decreasing nor
monotonically increasing then we have a contradiction. So the order of the leprechauns’ columns is either monotonically
decreasing or monotonically increasing. □

As before, switching row and columns gives us a proof for the corresponding property on rows of boxes:

Lemma 8. Let j be such that 1 ≤ j ≤ k+ 1. Then one of the following is true:

• For all 1 ≤ i ≤ k+ 1, there is a leprechaun in the ith row of Bi,j.
• For all 1 ≤ i ≤ k+ 1, there is a leprechaun in the k+ 2− ith row of Bi,j.

At this point, we have four remaining potential solutions:

1. The order of the leprechauns’ columns is monotonically increasing and the order of the leprechauns’ row is
monotonically decreasing: for all 1 ≤ i, j ≤ k + 1, there is a leprechaun at coordinates (j, k + 2 − i) in the box
Bi,j, corresponding to the board tile ((k+ 1)× (i− 1)+ j, (k+ 1)× (j− 1)+ k+ 2− i).

2. The order of the leprechauns’ columns is monotonically decreasing and the order of the leprechauns’ rows is
monotonically increasing: for all 1 ≤ i, j ≤ k + 1, there is a leprechaun at coordinates (k + 2 − j, i) in the box
Bi,j, corresponding to the board tile ((k+ 1)× (i− 1)+ k+ 2− j, (k+ 1)× (j− 1)+ i).

3. The order of the leprechauns’ columns is monotonically increasing and the order of the leprechauns’ rows is
monotonically increasing: for all 1 ≤ i, j ≤ k + 1, there is a leprechaun at coordinates (j, i) in the box Bi,j,
corresponding to the board tile ((k+ 1)× (i− 1)+ j, (k+ 1)× (j− 1)+ i).

4. The order of the leprechauns’ columns is monotonically decreasing and the order of the leprechauns’ rows is
monotonically decreasing: for all 1 ≤ i, j ≤ k + 1, there is a leprechaun at coordinates (k + 2 − j, k + 2 − i) in
the box Bi,j, corresponding to the board tile ((k+ 1)× (i− 1)+ k+ 2− j, (k+ 1)× (j− 1)+ k+ 2− i).

In the third potential solution, the leprechaun in the box B2,1 is on the board tile (k+ 2, 2) and the leprechaun in the
ox B is on the board tile (2, k+ 2). These two leprechauns are attacking each other, so the third potential solution is
1,2

12
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Fig. 6. Potential solution for k = 2 and n = (k+ 1)2 = 9.

ot a solution. In the fourth potential solution, the leprechaun in the box B1,1 is on the board tile (k+ 1, k+ 1) and the
leprechaun in the box B2,2 is on the board tile (2k + 1, 2k + 1). These two leprechauns are attacking each other, so the
fourth potential solution is not a solution.

Now only two potential solutions remain. In the first one, the leprechaun in the box B1,1 is on the board tile (1, k+1).
In the second one, the leprechaun in the box B1,1 is on the board tile (k+ 1, 1). Therefore the two potential solutions are
distinct. We now show that they mirror each other through the main diagonal.

Lemma 9. Let i0 and j0 be two integers such that 1 ≤ i0, j0 ≤ n. Then there is a leprechaun on tile (i0, j0) in the first potential
solution if and only if there is a leprechaun on tile (j0, i0) in the second potential solution.

Proof. ⇒ Suppose that there is a leprechaun on tile (i0, j0) in the first potential solution. Then there are 1 ≤ i, j ≤ k+ 1
such that i0 = (k+ 1)× (i− 1)+ j and j0 = (k+ 1)× (j− 1)+ k+ 2− i. Let i′ and j′ be such that i′ = j and j′ = i. We know
that there is a leprechaun on tile ((k+ 1)× (i′ − 1)+ k+ 2− j′, (k+ 1)× (j′ − 1)+ i′) in the second potential solution.
Since i′ = j and j′ = i, we have (k+ 1)× (i′ − 1)+ k+ 2− j′ = j0 and (k+ 1)× (j′ − 1)+ i′ = i0. So there is a leprechaun
on tile (j0, i0) in the second potential solution.
⇐ Since each potential solution has the same number of leprechauns, we only needed to prove one direction. □

Since both remaining potential solutions are symmetrical, we will from now on only consider the first one. For ease of
future reference, we give in Table 3 the coordinates in this potential solution of the leprechaun in Bi,j and of its nearest
neighbors. We also illustrate the potential solution for an even value of k in Fig. 6 and for an odd value in Fig. 7. In
the latter case, no two leprechauns are attacking each other, and we therefore have an actual solution for k = 3 and
n = (k+ 1)2 = 16. In the former case however, there are several cases of leprechauns attacking each other, for example
the two leprechauns in (1, 3) and (6, 8). This proves that there is no solution to the (2, 9)-Leprechauns Problem. More
generally:

Lemma 10. Let k > 0 and n be two integers such that k is even and n = (k+ 1)2. Then in the first potential solution to the
(k, n)-Leprechauns Problem, the leprechauns in boxes B1,k/2 and Bk/2+1,k+1 attack each other.

Proof. Let l1 be the leprechaun in the box B1,k/2 and let l2 be the leprechaun in the box Bk/2+1,k+1. We know from Table 3
hat the coordinates of l1 are (i1, j1) with i1 = (k+ 1)× (1− 1)+ k/2 and j1 = (k+ 1)× (k/2− 1)+ k+ 2− 1, while the
oordinates of l2 are (i2, j2) with i2 = (k+ 1)× (k/2+ 1− 1)+ k+ 1 and j2 = (k+ 1)× (k+ 1− 1)+ k+ 2− (k/2+ 1).
herefore

j1 − i1=(k+1)× (k/2−1)+k+2−1− (k+1)× (1−1)−k/2
=(k+ 1)× k/2− (k+ 1)+ k+ 1− k/2
=(k+ 1)× k/2− k/2

=k× k/2

13
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Table 3
Coordinates in the first potential solution of the leprechaun l in the box Bi,j and of the leprechauns in the surrounding
boxes.
Box Coordinates Difference with l’s

coordinates
Distance to l

Bi,j ((k+ 1)× (i− 1)+ j, (k+ 1)× (j− 1)+ k+ 2− i) (0, 0) 0
Bi+1,j ((k+ 1)× i+ j, (k+ 1)× (j− 1)+ k+ 1− i) (k+ 1,−1) k+1
Bi+1,j+1 ((k+ 1)× i+ j+ 1, (k+ 1)× j+ k+ 1− i) (k+ 2, k) k+2
Bi,j+1 ((k+ 1)× (i− 1)+ j+ 1, (k+ 1)× j+ k+ 2− i) (1, k+ 1) k+1
Bi−1,j+1 ((k+ 1)× (i− 2)+ j+ 1, (k+ 1)× j+ k+ 3− i) (−k, k+ 2) k+2
Bi−1,j ((k+ 1)× (i− 2)+ j, (k+ 1)× (j− 1)+ k+ 3− i) (−k− 1, 1) k+1
Bi−1,j−1 ((k+ 1)× (i− 2)+ j− 1, (k+ 1)× (j− 2)+ k+ 3− i) (−k− 2,−k) k+2
Bi,j−1 ((k+ 1)× (i− 1)+ j− 1, (k+ 1)× (j− 2)+ k+ 2− i) (−1,−k− 1) k+1
Bi+1,j−1 ((k+ 1)× i+ j− 1, (k+ 1)× (j− 2)+ k+ 1− i) (k,−k− 2) k+2

Fig. 7. Potential solution for k = 3 and n = (k+ 1)2 = 16.

nd
j2 − i2=(k+ 1)× (k+ 1− 1)+ k+ 2− (k/2+ 1)− (k+

1)× (k/2+ 1− 1)− k− 1
=(k+1)×k+k+2−k/2−1− (k+1)× (k/2)−k−1
=(k+ 1)× k− k/2− (k+ 1)× (k/2)
=(k+ 1)× (k/2)− k/2
=k× k/2

So j1 − i1 = j2 − i2. So l1 and l2 are on the same diagonal. So l1 and l2 are attacking each other. □

So if k is even, then the only potential solution (modulo reflection) to the (k, n)-Leprechauns Problem is not an actual
olution. This completes the proof of the Proposition for the case when k is even. Consequently we now assume that k is
dd.
14
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One of the consequences of Lemma 8 is that there is a leprechaun in each row of the board, so the row constraints of
he problem are satisfied. Similarly, from Lemma 7 we know that there is a leprechaun in each column of the board and
herefore that the column constraints of the problem are satisfied.

As can be seen in Table 3, for all 1 ≤ i, j ≤ k+ 1, the range-k leprechaun in the box Bi,j is out of reach of the range-k
eprechauns in the surrounding boxes. Therefore the proximity constraints are also satisfied.

We are now going to show that the last remaining constraints, the diagonal ones, are satisfied by the first potential
olution. Let l be the leprechaun in the box Bi,j with 1 ≤ i, j ≤ k + 1 and let l′ be the leprechaun in the box Bi′,j′ with
1 ≤ i′, j′ ≤ k + 1 such that either i′ ̸= i or j′ ̸= j. Let d+ (respectively d−) be the sum (respectively difference) of l’s
coordinates, and let d′

+
(respectively d′

−
) be the sum (respectively difference) of l′’s coordinates.

Suppose that d′
+
= d+. From Table 3 we have:

(k+ 1)× (i′ − 1)+ j′ + (k+ 1)× (j′ − 1)+ k+ 2− i′ = (k+ 1)× (i− 1)+ j+ (k+ 1)× (j− 1)+ k+ 2− i
⇓

(k+ 1)× i′ + j′ + (k+ 1)× j′ − i′ = (k+ 1)× i+ j+ (k+ 1)× j− i
⇓

k× i′ + (k+ 2)× j′ = k× i+ (k+ 2)× j
⇓

k× (i′ + j′)+ 2j′ = k× (i+ j)+ 2j

So (2j′ mȯd k) = (2j mȯd k). So either (j′ mȯd k) = (j mȯd k) or (j′ mȯd k) = ((j+ k/2) mȯd k). Since k is odd, we have
j′ mȯd k) = (j mȯd k). Moreover j′ ̸= j (because otherwise we would also have i′ = i and we assumed either i′ ̸= i or
′
̸= j). We have 1 ≤ j, j′ ≤ k + 1, so either j = 1 and j′ = k + 1 or the other way around. Without loss of generality,
ssume the former. The equality above becomes then:

k× (i′ + k+ 1)+ 2(k+ 1) = k× (i+ 1)+ 2
⇓

k× (i′ + k)+ 2k = k× i

Dividing by k we get i = i′ + k + 2. Since 1 ≤ i, i′ ≤ k + 1, we have a contradiction. Therefore d′
+

cannot be equal
o d+.

Suppose now that d′
−
= d−. From Table 3 we have:

(k+ 1)× (i′ − 1)+ j′ − (k+ 1)× (j′ − 1)− k− 2+ i′ = (k+ 1)× (i− 1)+ j− (k+ 1)× (j− 1)− k− 2+ i
⇓

(k+ 1)× i′ + j′ − (k+ 1)× j′ + i′ = (k+ 1)× i+ j− (k+ 1)× j+ i
⇓

(k+ 2)× i′ − k× j′ = (k+ 2)× i− k× j
⇓

k× (i′ − j′)+ 2i′ = k× (i− j)+ 2i

So (2i′ mȯd k) = (2i mȯd k). So either (i′ mȯd k) = (i mȯd k) or (i′ mȯd k) = ((i+ k/2) mȯd k). Since k is odd, we have
i′ mȯd k) = (i mȯd k). Moreover i′ ̸= i (because otherwise we would also have j′ = j and we assumed either i′ ̸= i or
′
̸= j). We have 1 ≤ i, i′ ≤ k + 1, so either i = 1 and i′ = k + 1 or the other way around. Without loss of generality,
ssume the former. The equality above becomes then:

k× (k+ 1− j′)+ 2(k+ 1) = k× (1− j)+ 2
⇓

k× (k− j′)+ 2k = k× (−j)

Dividing by k we get k − j′ + 2 = −j, or equivalently j = j′ − k − 2. Since 1 ≤ j, j′ ≤ k + 1, we have a contradiction.
herefore d′

−
cannot be equal to d−. Therefore the diagonal constraints are satisfied, and the first potential solution

s an actual solution to the (k, n)-Leprechauns Problem when k is odd and n = (k + 1)2. Since the second potential
olution is a reflective image of the first potential solution, it is an actual solution as well. This completes the proof of the
roposition. □

We can combine the last two propositions to completely solve the (k, n)-Leprechauns Problem for all configurations
f k and n such that n is at or below the parabola corresponding to the function (k+ 1)2.

heorem 2. Let k > 0 and n > 0 be such that n ≤ (k+ 1)2. Then the (k, n)-Leprechauns Problem is satisfiable if and only if
is odd and n = (k+1)2, in which case there are exactly two symmetrical solutions, or if n = 1, in which case there is exactly
ne trivial solution.
15
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Table 4
Smallest non-trivial board for which there is a solution to the
(k, n)-Leprechauns Problem.
k (k+ 1)2 n offset

1 4 4 0
2 9 10 1
3 16 16 0
4 25 28 3
5 36 36 0
6 49 52 3
7 64 64 0
8 81 82 1
9 100 100 0

Table 5
Number p of solutions to the (k, n)-Leprechauns Problem for some combinations of k and
n. For each k, the first value of n shown is the first n > 1 for which there exists at least
one solution.
k = 3 k = 4 k = 5 k = 6

n p n p n p n p

16 2 28 10 36 2 52 6
17 34 29 286 37 74
18 4 30 696 38 0
19 112 31 10016 39 48
20 516 32 201332 40 68
21 7312 41 808
22 81324
23 1056560
24 13443944
25 171919446

We have fully treated the case when n ≤ (k + 1)2, and proven that it covers the board sizes where the additional
distance constraints introduced by leprechauns cannot be satisfied.

4.2. When n is over (k+ 1)2

It is natural to wonder what is for each k the first non-trivial (that is, not 1) n for which there exists a solution to the
k, n)-Leprechauns Problem. From Theorem 2, we know that for odd k the answer is exactly (k+ 1)2. Since a solution to
he (k + 1, n)-Leprechauns Problem also satisfies all constraints from the (k, n)-Leprechauns Problem, this implies that
he demarcation lies between (k+ 1)2 and (k+ 2)2 for all k.

For the first few values of k, we collect in Table 4 the smallest size n > 1 for which a board is large enough to admit
solution to the (k, n)-Leprechauns Problem. The entries for odd k were filled by using the result from Theorem 2. For
ven k, at least up until 8, the smallest value of n (> 1) for which the (k, n)-Leprechauns Problem is satisfiable appears
o be equal to the smallest prime number larger than (k+ 1)2, minus 1. That this value is an upper bound comes from a
onstruction for the n-Queens Problem when n is either prime or one less than a prime [24]. We can, in a manner similar
o the proofs of Lemmas 1 and 3, generalize this construction to the (k, n)-Leprechauns Problem when n is big enough. To
erify that this is indeed the smallest eligible n, we used exhaustive search to look for a solution to the (k, n)-Leprechauns
or each n between the known bounds, and did not find any.

Interestingly, while for k = 1 and k = 2 there is only one continuous unsatisfiability phase (from 2 to 3 and from
to 9 respectively), this is not true for all k. For the (5, n)-Leprechauns Problem in particular, there is no solution for
≤ n ≤ 35, there is a solution for n = 36 and for n = 37, but there is no solution for n = 38.
We give in Table 5 the number of solutions to the (k, n)-Leprechauns Problem for the first few values of k ≥ 3 and

n ≥ (k + 1)2. These numbers were provided by an anonymous reviewer, to whom we are grateful. Similar results exist
for the (1,n)- (queens [26]) and (2,n)- (superqueens [25]) Leprechauns Problems.

5. Conclusion

We have made the first strides towards solving the Diverse n-Queens Problem by studying the equivalent (k, n)-
eprechauns Problems. We have given a vertical result, in the form of an algorithm that can solve the (2, n)-Leprechauns
roblem, as well as a horizontal one, in our characterization of the Problem for n ≤ (k + 1)2. The latter provides strong

theoretical evidence that the phase transition from unsatisfiability to satisfiability in the (k, n)-Leprechauns Problem
occurs around n = (k+ 1)2.

In addition of diversity, potential future work on the (k, n)-Leprechauns Problem could try to apply it on representation,

hich is a related but different notion that has been studied in other constraint fields [23].
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