You are here

Sensor and feature selection for an emergency first responders activity recognition system


Sebastian Scheurer, Salvatore Tedesco, Ken Brown, Brendan O'Flynn

Publication Type: 
Refereed Conference Meeting Proceeding
Human activity recognition (HAR) has a wide range of applications, such as monitoring ambulatory patients' recovery, workers for harmful movement patterns, or elderly populations for falls. These systems often operate in an environment where battery lifespan, power consumption, and hence computational complexity, are of prime concern. This work explores three methods for reducing the dimensionality of a HAR problem in the context of an emergency first responders monitoring system. We empirically estimate the accuracy of k-Nearest Neighbours, Support Vector Machines, and Gradient Boosted Trees when using different combinations of (A)ccelerometer, (G)yroscope and (P)ressure sensors. We then apply Principal Component Analysis for dimensionality reduction, and the Kruskal-Wallis test for feature selection. Our results show that the best combination is that which includes all three sensors (MAE: 3.6%), followed by the A/G (MAE: 3.7%), and the A/P combination (MAE 4.3%): the same as that when using the accelerometer alone. Moreover, our results show that the Kruskal-Wallis test can be used to discard up to 50% of the features, and yet improve the performance of classification algorithms.
Conference Name: 
2017 IEEE Sensors
Digital Object Identifer (DOI): 
Publication Date: 
Conference Location: 
United Kingdom (excluding Northern Ireland)
National University of Ireland, Cork (UCC)
Tyndall National Institute
Open access repository: