You are here

Real-time data analytics and event detection for IoT-enabled communication systems

Publication Type: 
Refereed Review Article
Enterprise Communication Systems are designed in such a way to maximise the efficiency of communication and collaboration within the enterprise. With users becoming mobile, the Internet of Things (IoT) can play a crucial role in this process, but is far from being seamlessly integrated into modern online communications. In this paper, we present a semantic infrastructure for gathering, integrating and reasoning upon heterogeneous, distributed and continuously changing data streams by means of semantic technologies and rule-based inference. Our solution exploits semantics to go beyond today’s ad-hoc integration and processing of heterogeneous data sources for static and streaming data. It provides flexible and efficient processing techniques that can transform low-level data into high-level abstractions and actionable knowledge, bridging the gap between IoT and online Enterprise Communication Systems. We document the technologies used for acquisition and semantic enrichment of sensor data, continuous semantic query processing for integration and filtering, as well as stream reasoning for decision support. Our main contributions are the following, (i) we define and deploy a semantic processing pipeline for IoT-enabled Communication Systems, which builds upon existing systems for semantic data acquisition, continuous query processing and stream reasoning, detailing the implementation of each component of our framework; (ii) we present a rich semantic information model for representing and linking IoT data, social data and personal data in the Enterprise Communication scenario, by reusing and extending existing standard semantic models; (iii) we define and develop an expressive stream reasoning component as part of our framework, based on continuous query processing and non-monotonic reasoning for semantic streams, (iv) we conduct experiments to comparatively evaluate the performance of our data acquisition and semantic annotation layer based on OpenIoT, and the performance of our expressive reasoning layer in the scenario of Enterprise Communication.
Digital Object Identifer (DOI):
Publication Status: 
Date Accepted for Publication: 
Thursday, 21 July, 2016
Publication Date: 
Journal of Web Semantics
Research Group: 
National University of Ireland, Galway (NUIG)
Open access repository: