You are here

Measuring Semantic Distance for Linked Open Data-enabled Recommender Systems

Publication Type: 
Refereed Conference Meeting Proceeding
The Linked Open Data (LOD) initiative has been quite successful in terms of publishing and interlinking data on the Web. On top of the huge amount of interconnected data, measuring relatedness between resources and identifying the relatedness of them could be used for various applications such as LOD-enabled recommender systems. In this paper, we propose various distance measures, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating Linked Data semantic distance between resources that can be used in a LOD-enabled recommender system. We evaluated the distance measures in the context of a recommender system that provides the top-N recommendations with baseline methods such as LDSD. Results show that the performance is significantly improved by our proposed distance measures incorporating normalizations that use both of the resources and global appearances of paths in a graph.
Conference Name: 
The 31st ACM/SIGAPP Symposium on Applied Computing, Pisa, Italy, 2016
Digital Object Identifer (DOI): 
Publication Date: 
Conference Location: 
Research Group: 
National University of Ireland, Galway (NUIG)
Open access repository: 
Publication document: