You are here

Capacity and contention-based joint routing and gateway selection for machine-type communications


Muhammad Umer Farooq, Cormac J. Sreenan, Ken Brown

Publication Type: 
Refereed Original Article
Typically, in machine-type communications (MTC) devices communicate with servers over the Internet. In a large-scale machine-to-machine area (M2M) network, the devices may not connect directly to the Internet due to radio transmission and energy limitations. Therefore, the devices collaborate wirelessly to relay their data to a gateway. A large-scale M2M area network may have multiple gateways, selecting a proper gateway for the devices can have immense impact on the network’s performance. We present the channel capacity and contention-based joint routing and gateway selection methods for MTC. Based on channel capacity and contention, our methods select the best gateway on per-packet, per-flow, and per-node basis. We compare the methods’ performance with existing methods using simulation and test-bed experiments. We analyse the impact of the number of gateways, physical distribution of transmitters, control overhead, and duty-cycling on the performance of the gateway selection methods. Our results demonstrate that, in duty-cycled operations, the methods’ performance depends on control overhead and making a good trade-off between load imbalance to different gateways and a forwarding path’s length. Otherwise only the latter impacts the methods’ performance. In general, our node-based best gateway selection method makes a better trade-off and exhibits lower control overhead, hence it demonstrates better performance. Moreover, our methods demonstrate better performance as compared to an existing state-of-the-art joint routing and gateway selection method.
Digital Object Identifer (DOI): 
Publication Status: 
Publication Date: 
Ad Hoc Networks
National University of Ireland, Cork (UCC)
Open access repository: